Structure of catena-(Acetato)(di-2-pyridylamine)- μ-nitrato-copper(II)

By Suittra Aduldecha and Brian Hathaway*
Chemistry Department, University College, Cork, Ireland

(Received 26 September 1989; accepted 2 June 1990)

Abstract

Cu}\left(\mathrm{NO}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right], \quad M_{r}=\) 355.79, monoclinic, $P 2_{1} / n, \quad Z=4, \quad a=12.859$ (3), $\mathrm{b}=9.674$ (2), $\quad c=12.247(3) \AA, \quad \beta=113.52(2)^{\circ}$, $V=1396.93 \AA^{3}, \quad D_{m}$ (flotation) $=1.720(6), \quad D_{x}=$ $1.692 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $15.36 \mathrm{~cm}^{-1}, T=298 \mathrm{~K}, F(000)=724$, 1822 unique observed reflections. $R=0.037$. The local molecular $\mathrm{CuN}_{2} \mathrm{O}_{2} \mathrm{O}_{2}^{\prime}$ chromophore involves an elongated rhombic octahedral structure, with nearly symmetrically bonded di-2-pyridylamine (dpyam) and bidentate acetate groups bonding in the plane and bridging 'semi-coordinate' nitrate groups completing the six coordination.

Introduction. Copper metal reduction (Hathaway \& Underhill, 1960) of $\left[\mathrm{Cu}(\text { dpyam })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right]\left[\mathrm{NO}_{3}\right]$ in acetonitrile solution, on reoxygenation in air, yielded dark bluish-green crystals of the title complex (I). As the mode of bonding of the anions in (I) is ambiguous, (I) was reprepared from its components and the structure determined.

Experimental. (I) was prepared by adding a boiling solution containing $0.48 \mathrm{~g} \quad(2.0 \mathrm{mmol})$ of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in 40 ml of water, to 0.35 g dpyam $(2.0 \mathrm{mmol})$ in 60 ml of ethanol and $0.33 \mathrm{~g}(4.0 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{Na}$. The mixed solutions were heated to boiling, filtered, allowed to stand, and yielded bluish-green crystals of (I). Found: C, 40.66; H, 3•39; $\mathrm{Cu}, 18 \cdot 11 ; \mathrm{N}, 16 \cdot 02 \%$: calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{CuN}_{4} \mathrm{O}_{5}$: C, $40 \cdot 50 ; \mathrm{H}, 3 \cdot 38 ; \mathrm{Cu}, 17.87$; $\mathrm{N}, 15.75 \%$.

The unit-cell data (25 reflections, $\theta \quad 3-25^{\circ}$) and intensities were collected on a Philips PW 1100 diffractometer with graphite-monochromatized Mo K α radiation. Reflections with $3.0<\theta<25^{\circ}$ in one quadrant were examined, in the $\omega-2 \theta$ scan mode, with a constant scan speed of $0.05^{\circ} \mathrm{s}^{-1}$, and a variable scan width of $(0 \cdot 7+0 \cdot 1 \tan \theta)^{\circ} .1882$ observed reflections were collected $[I>2.5 \sigma(I) ; h,-14-14, k$, $0-11, l, 0-14]$ of which 1822 were unique. Lorentz and polarization corrections were applied, but no correction was made for absorption. The structure was solved by the SHELX76 direct methods (Sheldrick, 1976) and difference Fourier techniques and

[^0]refined by full-matrix least-squares minimization of $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with anisotropic temperature factors on all the non-H atoms. The positions of the H atoms were calculated geometrically and 'floated' on the adjacent C or N atoms, assuming $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distances of $1.08 \AA$, and a fixed temperature factor of $0.07 \AA^{2}$. Maximum shift/e.s.d. was <0.001, with a refined weighting scheme, $w=k\left[\sigma^{2}\left(F_{o}\right)+\right.$ $\left.g\left(F_{o}\right)^{2}\right]^{-1}$ with $k=1.0000$ and $g=0.001711 . \quad R=$ 0.037 and $w R=0.043, \quad 200$ parameters, 9.1 observations/parameter. The maximum and minimum residual electron densities were 0.40 and $-0.38 \mathrm{e} \AA^{-3}$, respectively. Complex neutral-atom scattering factors were employed and those for Cu atoms were taken from Cromer \& Waber (1974). All calculations were carried out with SHELX76 (Sheldrick, 1976) and XANADU (Roberts \& Sheldrick, 1979), CHEM-X (Davies, 1980) and PUBTAB (Henrick, 1980) on the UCC mainframe IBM 4341 and VAX 11/780 computers. Final atomic coordinates and equivalent isotropic temperature factors are given in Table $1 . \dagger$ Selected bond lengths and angles are given in Table 2. Fig. 1 shows the molecular structure of (I), and the atom-numbering scheme used.

Discussion. The asymmetric unit of (I) consists of the $\left[\mathrm{Cu}(\right.$ dpyam $\left.)\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\left(\mathrm{NO}_{3}\right)\right]$ complex. It involves a six coordinate $\mathrm{CuN}_{2} \mathrm{O}_{2} \mathrm{O}_{2}^{\prime}$ chromophore, with a basic elongated rhombic octahedral stereochemistry (Fig. 1). The octahedra are linked into infinite chains in the elongation direction, parallel to the a axis, by bridging bidentate nitrate groups (Addison, Logan, Wallwork \& Garner, 1971). The dpyam ligand bonds almost symmetrically in the plane with $\mathrm{Cu}-\mathrm{N}$ distances of 1.954 (3) and 1.960 (3), mean 1.957 (4) \AA, and with a bite angle of $94.5(1)^{\circ}$. The acetate group also bonds in the plane, nearly symmetrically, with $\mathrm{Cu}-\mathrm{O}$ distances of 2.007 (2) and 2.024 (3), mean 2.015 (3) \AA, and with a bite angle at the Cu atom of

[^1]Table 1. Fractional atomic coordinates and thermal parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
Cu	0.48468 (4)	0.23760 (4)	0.75450 (4)	0.0402 (2)
N(1)	0.4601 (2)	0.0383 (3)	0.7341 (2)	0.045 (1)
C(1)	0.4977 (3)	-0.0260 (3)	$0 \cdot 6588$ (3)	0.058 (1)
C(2)	0.4938 (3)	-0.1659 (3)	$0 \cdot 6423$ (3)	0.066 (1)
C(3)	0.4502 (3)	-0.2466 (3)	$0 \cdot 7075$ (3)	0.062 (1)
C(4)	0.4109 (3)	-0.1847 (3)	0.7828 (3)	0.056 (1)
C(5)	0.4170 (2)	-0.0402 (3)	0.7959 (3)	0.047 (1)
N(3)	0.3762 (2)	0.0167 (3)	$0 \cdot 8740$ (2)	0.067 (1)
C(6)	$0 \cdot 3670$ (2)	0.1514 (3)	0.9051 (3)	0.047 (1)
C(7)	$0 \cdot 3168$ (3)	$0 \cdot 1730$ (4)	0.9859 (3)	0.067 (1)
C(8)	$0 \cdot 3055$ (3)	0.3043 (4)	1.0205 (3)	0.070 (1)
C(9)	0.3414 (3)	0.4138 (4)	0.9724 (3)	0.068 (1)
C(10)	$0 \cdot 3898$ (3)	0.3871 (3)	$0 \cdot 8936$ (3)	0.060 (1)
N(2)	0.4036 (2)	$0 \cdot 2574$ (2)	$0 \cdot 8593$ (2)	0.047 (1)
$\mathrm{O}(1)$	$0 \cdot 5435$ (2)	$0 \cdot 4310$ (2)	0.7616 (2)	0.062 (1)
O(2)	0.5873 (2)	0.2663 (2)	0.6670 (2)	0.069 (1)
C(11)	0.5979 (3)	0.3907 (3)	0.7010 (3)	0.061 (1)
C(12)	$0 \cdot 6722$ (3)	$0 \cdot 4881$ (4)	$0 \cdot 6711$ (4)	$0 \cdot 101$ (1)
$\mathrm{O}(3)$	$0 \cdot 3121$ (3)	$0 \cdot 3323$ (3)	0.5988 (2)	0.092 (1)
N(4)	$0 \cdot 2543$ (2)	0.2765 (3)	0.5024 (2)	0.050 (1)
O(4)	0.2933 (2)	$0 \cdot 1901$ (3)	0.4575 (2)	0.079 (1)
$\mathrm{O}(5)$	$0 \cdot 1552$ (2)	$0 \cdot 3201$ (3)	0.4531 (2)	0.079 (1)

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Cu}-\mathrm{N}(1)$	$1.954(3)$	$\mathrm{O}(3)-\mathrm{N}(4)$	$1 \cdot 240(3)$
$\mathrm{Cu}-\mathrm{N}(2)$	$1.960(3)$	$\mathrm{O}(4)-\mathrm{N}(4)$	$1 \cdot 213(3)$
$\mathrm{Cu}-\mathrm{O}(2)$	$2.024(3)$	$\mathrm{O}(5)-\mathrm{N}(4)$	$1 \cdot 246(3)$
$\mathrm{Cu}-\mathrm{O}(1)$	$2.007(2)$	$\mathrm{O}(2)-\mathrm{C}(11)$	$1 \cdot 263(4)$
$\mathrm{Cu}-\mathrm{O}(3)$	$2.454(3)$	$\mathrm{O}(1)-\mathrm{C}(11)$	$1 \cdot 268(4)$
$\mathrm{Cu}-\mathrm{O}\left(5^{\prime}\right)$	$2 \cdot 603(3)$		
$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(2)$	$94 \cdot 5(1)$	$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{O}(2)$	$118 \cdot 3(3)$
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{N}(1)$	$100 \cdot 0(1)$	$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}\left(5^{\prime}\right)$	$165 \cdot 7(1)$
$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{N}(2)$	$164 \cdot 4(1)$	$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{O}\left(5^{\prime}\right)$	$83 \cdot 1(1)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(2)$	$99 \cdot 8(1)$	$\mathrm{N}(2)-\mathrm{Cu}-\mathrm{O}\left(5^{\prime}\right)$	$86 \cdot 6(1)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(1)$	$164 \cdot 7(1)$	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}\left(5^{\prime}\right)$	$92 \cdot 3(1)$
$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(2)$	$65 \cdot 2(1)$	$\mathrm{O}(2)-\mathrm{Cu}-\mathrm{O}\left(5^{\prime}\right)$	$89 \cdot 8(1)$
$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{N}(1)$	$102 \cdot 7(1)$	$\mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(5)$	$132 \cdot 1(3)$
$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{N}(2)$	$85 \cdot 4(1)$	$\mathrm{O}(4)-\mathrm{N}(4)-\mathrm{O}(3)$	$122 \cdot 1(3)$
$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}(2)$	$96 \cdot 7(1)$	$\mathrm{O}(5)-\mathrm{N}(4)-\mathrm{O}(3)$	$115 \cdot 0(3)$
$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}(1)$	$83 \cdot 9(1)$	$\mathrm{O}(5)-\mathrm{N}(4)-\mathrm{O}(4)$	$122 \cdot 8(3)$

$\mathrm{O}\left(5^{\prime}\right)$ is related to $\mathrm{O}(5)$ by the operation $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.
$65 \cdot 2(1)^{\circ}$, significantly less than the bite angle of the dpyam ligand. The two O atoms from the asymmetrically bridging nitrate groups occupy the tetragonal positions above and below the $\mathrm{CuN}_{2} \mathrm{O}_{2}$ plane, at $\mathrm{Cu}-\mathrm{O}$ distances of 2.454 (3) and 2.603 (4), mean $2 \cdot 528$ (4) \AA, distances that are consistent with 'semi coordination' of the bridging nitrate groups (Procter, Hathaway \& Nicholls, 1968). This yields a tetragonality, T ($=$ mean in-plane distance/mean out-ofplane distance), of 0.785 . The $\mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}(5)$ angle is nearly linear, $165 \cdot 7(1)^{\circ}$, and lies approximately parallel to the a axis. The atoms $\mathrm{O}(1), \mathrm{O}(2), \mathrm{N}(1)$ and $\mathrm{N}(2)$ are essentially planar, r.m.s. deviation $0.002 \AA$, and the Cu atom lies $0.083 \AA$ above this plane towards $\mathrm{O}(3)$. There are no unusual bond lengths or
bond angles in the dpyam ligand (Ray \& Hathaway, 1978), the separate pyridine rings are planar, and inclined to each other at an angle of $2 \cdot 0^{\circ}$. The $\mathrm{C}-\mathrm{O}$ distances of the acetate group are not significantly different. The two-coordinate (Hathaway, 1988) bridging nitrate groups have a mean $\mathrm{N}-\mathrm{O}$ distance of $1.233 \AA$, and mean $\mathrm{O}-\mathrm{N}-\mathrm{O}$ angle of $120.0(5)^{\circ}$ (Addison et al., 1971). The $\mathrm{N}-\mathrm{O}$ distances of the two coordinating O atoms, 1.240 (3) and $1 \cdot 246$ (3) \AA, are significantly longer than the non-coordinating O atom, $1-213$ (4) \AA, due to the greater $\mathrm{N}(4)-\mathrm{O}(3)$ double-bond character. The $\mathrm{O}(1)-\mathrm{N}(4)-\mathrm{O}(2)$ angle of $115 \cdot 0(5)^{\circ}$, opposite to the shorter $\mathrm{N}-\mathrm{O}$ distance, is significantly then less than 120°.
The elongated rhombic octahedral $\mathrm{CuN}_{2} \mathrm{O}_{2} \mathrm{O}_{2}^{\prime}$ chromophore of (I) has been previously observed in [Cu (dpyam) $\left.\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\left(\mathrm{ClO}_{4}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$, (II), (Ray, Tyagi \& Hathaway, 1982), which also involves a symmetrically bonded in-plane dpyam and acetate ligand, but differs in the presence of a long bonded bridging perchlorate group rather than the bridging nitrate group of (I). The symmetrical coordination of the acetate group to the Cu atom in (I) and (II) (Oldham, 1968), is unusual, as this anion is normally involved in very asymmetric bonding (Hathaway, 1973, 1988), with $\mathrm{Cu}-\mathrm{O}$ distances of approximately 2.00 and $2 \cdot 5-2 \cdot 9 \AA$, respectively. Attempts to determine the infrared spectrum of the acetate group were unsuccessful, due to overlap with the bands of the dpyam ligand in the region of $1500 \mathrm{~cm}^{-1}$, but bands at 1390 and $825 \mathrm{~cm}^{-1}$ are associated with the

Fig. 1. The molecular structure of $\left[\mathrm{Cu}(\mathrm{dpyam})\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{O}_{2} \mathrm{NO}\right)\right]$, viewed approximately down the c axis, and the atom-numbering scheme used.
bidentate bridging role of the nitrate group (Nakamoto, 1978). The electronic reflectance spectrum of (I) has a broad peak centred at $15000 \mathrm{~cm}^{-1}$, with a weakly resolved shoulder at $10200 \mathrm{~cm}^{-1}$, consistent with its stereochemistry, and comparable with the electronic spectra of (II), which has a main band at $15800 \mathrm{~cm}^{-1}$ and a weakly resolved shoulder at $10000 \mathrm{~cm}^{-1}$ (Ray, Tyagi \& Hathaway, 1982). The lower energy of the main band in (I) is then consistent with the slightly higher tetragonality of (I) than of (II), 0.785 and 0.765 , respectively. The polycrystalline ESR spectrum of (I) is axial, $g_{1}=2.073$ and $g_{11}=2.299$ and consistent with the elongated rhombic octahedral chromophore present, but due to some misalignment of the local molecular axes ($2 \gamma=$ 80°), these g values do not equate with the local molecular g values (Hathaway \& Billing, 1970).

The authors acknowledge the award of a senior studentship (to SA), help in data collection by Dr M. McPartlin and Mr A. Bashall (Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway Road, London), the Computer Bureau (UCC) for computing facilities, Professor G. M. Sheldrick, Drs P. Roberts, S. Motherwell, K. Henrick and K. Davies, for the use of their programs, and the Microanalysis Section (UCC) for analysis.

References

Addison, C. C., Logan, N., Wallwork, S. C. \& Garner, C. D. (1971). Q. Rev. Chem. Soc. 25, 289-322.

Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 71, 148. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Davies, E. K. (1980). CHEM-X. Molecular graphics program, developed and distributed by Chemical Design Ltd, Oxford.
Hathaway, B. J. (1973). Struct. Bonding (Berlin), 14, 49-67.
Hathaway, B. J. (1988). Comprehensive Coordination Chemistry. The Synthesis, Reactions, Properties \& Applications of Coordination Compounds. Editor in Chief G. Wilkinson, FRS; Executive Editors R. D. Gillard \& J. A. McCleverty, Vol. 2, section 15.5, pp. 413-434. Oxford: Pergamon Press.

Hathaway, B. J. \& Billing, D. E. (1970). Coord. Chem. Rev. 5, 143-207.
Hathaway, B. J. \& Underhill, A. E. (1960). J. Chem. Soc. pp. 3705-3711.
Henrick, K. (1980). PUBTAB. Program to prepare and print crystallographic tables for publication.
Nakamoro, K. (1978). Infra-red and Raman Spectra of Inorganic and Coordination Compounds, 3rd edition. New York: John Wiley.
Oldham, C. (1968). Prog. Inorg. Chem. 10, 223-258.
Procter, I. M., Hathaway, B. J. \& Nicholls, P. (1968). J. Chem. Soc. A, pp. 1678-1684.
Ray, N. \& Hathaway, B. J. (1978). Acta Cryst. B34, 3324-3229.
Ray, N., Tyagi, S. \& Hathaway, B. J. (1982). Acta Cryst. B38, 1574-1577.
Roberts, P. \& Sheldrick, G. M. (1979). XANADU. Program for crystallographic calculation. Univ. of Cambridge, England.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1991). C47, 86-89

Structure of Bis[cyanatobis(di-2-pyridylamine)copper(II)] Sulfate Bis(di-2-pyridylamine) Monohydrate

By Pervais Akhter and Brian Hathaway*
Chemistry Department, University College, Cork, Ireland

(Received 27 September 1989; accepted 2 July 1990)

Abstract

Cu}(\mathrm{NCO})\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3}\right)_{2}\right]\left(\mathrm{SO}_{4}\right)_{0.5} . \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} .-\) $0.5 \mathrm{H}_{2} \mathrm{O}, M_{r}=676 \cdot 20$, monoclinic, $I 2 / c$ [equivalent positions: $\left.\pm(x, y, z) ; \quad \pm\left(-x, y, \frac{1}{2}-z\right)\right], \quad Z=8, \quad a=$ 17.688 (3),$\quad b=20.596$ (4), $\quad c=17.519$ (2) $\AA, \quad \beta=$ $96 \cdot 886(2)^{\circ}, V=6336 \cdot 17 \AA^{3}, D_{m}$ (flotation) $=1 \cdot 42(6)$, $D_{x}=1.417 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $0.733 \mathrm{~mm}^{-1}, T=298 \mathrm{~K}, F(000)=2792,1893$ unique observed reflections, $R=0.077$. The $\mathrm{CuN}_{4} \mathrm{~N}^{\prime}$ chromophore involves a square pyramidal structure, distorted towards a trigonal bipyramidal stereochemistry, $\tau=0.31$. The NCO^{-}anion is bonded to

[^2]0108-2701/91/010086-04\$03.00
the copper(II) ion via the N atom. The two noncoordinated dpyam (dpyam $=2,2^{\prime}$-dipyridylamine) molecules are disordered about a centre and a twofold axis of symmetry, respectively, and both are poorly defined. The $\left[\mathrm{SO}_{4}\right]^{2-}$ anion is also disordered about a centre of symmetry, $\mathrm{SOF}=0.5$, and the non-coordinated water molecule is also disordered, $\mathrm{SOF}=0.5$.

Introduction. The structure determination of the $\left[\mathrm{Cu}(\mathrm{dpyam})_{2}(\mathrm{NCO})\right]^{+}$cation has been undertaken to establish (a) the mode of bonding of the NCO^{-} anion to the copper(II) cation, (b) the stereo-
© 1991 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters, full bond lengths and bond angles and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53361 (18 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 (C) 1991 International Union of Crystallography

[^2]: * To whom correspondence should be addressed.

